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A graphical representation of matrix elements of spin-free one- and two-electron operators is 
used for deriving a simple algorithm for the evaluation of their values. The method covers all the 
cases which may occur when wave functions are taken as mutually orthogonal antisymmetrized 
products of spinorbitals (which are assumed to form an orthonormal set) and are eigenfunctions of 
5:2 and 5#z operators. The resulting formulas are suitable as well for computer programming as for 
hand calculations. 

Mit Hilfe einer graphischen Darstellung wird ein einfacher Algorithmus zur Bestimmung der 
Werte der Matrix-Elemente yon spinfreien Ein- und Zweielektronenoperatoren abgeleitet. Dutch 
diese Methode werden alle F~ille erfaBt, die auftreten, wenn die Wellenfunktionen wechselweise 
orthogonale, antisymmetrisierte Produkte yon Spinorbitalen (von denen angenommen wird, dab sic 
einen orthogonalen Satz bilden) darstellen und Eigenfunktion der 5:2 und ~ Operatoren sind. 
Die erhaltenen Formeln eignen sich ftir Rechnungen mit und ohne Verwendung eines Computers. 

1. Introduction 

Although the multiexcited configurations were shown to be fundamental ly 
impor tant  in the energy levels calculations, they are included rather exceptionally. 
One  of the most  impor tan t  barriers for extension of configurat ion interaction 
expansions by inclusion of multiexcited configurations presents the problem 
of evaluation of matrix elements for open shell configurations. A simple method,  
originally formulated by Paul ing [-10], was further extended by numerous  authors  
in spin-dependent  [11] as well as in spin-free [-8] formulat ion of quan tum 
chemistry. However  an applicability of the algori thms obtained is limited to the 
valence-bond wave functions. In the case of spin-projected wave functions the 
problem has been solved in its general form by Harris [2]. Evaluation of the matrix 
elements is considerably more  t roublesome when the wave functions (being 
ant isymmetr ic  eigenfunctions of  ~ z  and ~ operators) are mutual ly or thogonal .  
Tables of  formulas for different types of  the matrix elements, published occasionally 
by various authors  [-9] are really convenient  in some special cases, but are 
completely insufficient for an au thomat ic  construct ion of configuration inter- 
action matrices. The main source of difficulty lies in an enormous  number  of 
different types of formulas, which rapidly grows up with the number  of singly 
occupied orbitals. The tables of Yamazaki  [16], p robably  the most  complete in 
this type, cover the configurat ions with at most  six singly occupied orbitals and 
contain a few thousands  of formulas. Another ,  signifficantly more  condensed 
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type of formulas, however limited to the singlet configurations being no more 
than doubly excited relatively to a closed shell ground-state, was derived by 
Ci~ek [-1]. A very interesting algebraic approach making use of the permutational 
symmetry of the space part of the wave function was recently given by Kaplan [-4]. 
The method enables to evaluate all the types of diagonal and some types of the 
off diagonal matrix elements. Recently, the second quantization formalism has 
been used for evaluation of the matrix elements by Kuprievich et al. [7] 

A different and probably the most general is the Serber-Yamanouchi-Kotani 
approach [-6] which may be easily applied in the case of an orthogonal set of 
antisymmetric configurations being eigenfunctions of 5 az and 6P operators. 
The most important obstacle in its direct application is that the matrix elements, 
in the case of N-electron system, are expressed as sums over N! terms. However 
when the wave functions are taken as linear combinations of antisymmetrized 
products of orthogonal one-electron spinorbitals, these sums contain only a few 
non-zero terms [2, 5, 12]. An efficient method enabling to select the nonvanishing 
terms and to determine the coefficients with which the appropriate integrals 
there appear was recently presented in two different versions by Ruedenberg, 
Salmon and Poshusta [12-14]. An alternative handling of the subject was 
independently proposed by the author I-5]. In the present paper the Ruedenberg's 
formulas are rederived using a diagram technique z which is shown to be a very 
useful tool as well for general considerations as for practical calculations. An 
example of such calculation is given as an illustration of the method. Moreover 
a further simplification of these formulas, being particulary important from the 
point of view of an applicability of the method to computer-programming, is here 
performed. 

2. Formulation of the Problem 

We are concerned with one-electron operators 

and two-electron operators 

N 
]t~ = ~ ~l(r,) (1) 

i=l. 

N N-1  
Jg2= ~ ~ ~2(r,,rj) (2) 

j = i + l  i=1 

where r~ denote the spatial coordinates of electron i, N means number of the 
electrons and g2(ri, r j) = ~2(r j ,  rg). In particular, Hamiltonian of a system of N 
electrons can always be written in the form 

= Ye 1 + Xe 2 . (3) 

1 A very complete review of literature concerning the subject is presented in an article of Rueden- 
berg and Poshusta  1-13] where the reader is referred to. 

2 This paper was completed before the Ruedenberg et  al. results [12-14] have got to the author 's  
knowledge. Therefore an approach of Kotani  et  al. [6] was taken as a starting point in this discussion 
and the notation used here is as close as it is possible to that  of Kotani  and rather different from the 
Ruedenberg's  one. 
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Let us define a primitive function 7 ~~ as a product of N one-electron orbitals 
chosen from an orthonormal set 

~'l, ~2, ..., ~PK( K > N/2) 
N 

~P~ r2,.. . ,  ru)= 1-[ tPx,(ri). (4) 
i=1 

Every primitive function corresponds to an electronic configuration 2, described 
by the set of indices [-21, 22, ..., 2NJ. Some orbitals can be doubly occupied. Then 
they appear twice in the product (4) and are there written after the singly occupied 
orbitals. Moreover, both kinds of orbitals are put in (4) in the growing order of 
their indices. It means that 

~'1 < 22 < ' ' "  < "~p 
(5) 

)gp+l ='~'p+ 2 </] 'p+3 = ~p+4 "<""  "~ 2N-1 = ~N 

where p denotes the number of singly occupied orbitals in configuration 2. 
In order to construct a wave function with the proper spin and space symmetry 

properties, based on the orbital product (4), it is convenient to follow the work of 
Kotani et al. [-6] 3. For this purpose we introduce an orthonormal set OSM.k 
of all the linearly independent N-electron eigenfunctions of 5 ~2 and Yz operators 
corresponding to the eigenvalues S(S+ 1)h z and Mh, which span a subspace 
of the whole 2 N dimensional N-spin space. This subspace is called the S M  sub- 
space. Its dimension fs  N can be evaluated from the formula [-6]: 

fsN= (2S+ 1)N! (6) 
(N/2 + S + 1)! (N/2 - S)! " 

Index k numbers the basis functions of S M  subspace and varies from 1 to fs  N. 
The S M  subspace is invariant in respect to permutation operators ~ ,  acting 

on the spin coordinates of electrons 
I f  

~ O s M , k  = • VS~(~)jk OsM,j. (7) 
j = l  

The VsN(N) matrices form an irreducible representation of the N !th order permu- 
tation group ~u [-6]. The basis OSM, k of S M  subspace has been chosen as ortho- 
normal. Then Vs N matrices are unitary. As the basis OsM,k is complete in the spin 
space, every normalized eigenfunction q~SM(r, a) of 5 p2 and 5Pz, depending on 
space (r) and spin (a) coordinates of N electrons, can be expanded as 

1 r 
�9 sM(r, = k=l Zs, k(r) (s) 

where ZS, k(V) are normalized to unity and M-independent functions of the spatial 
coordinates of electrons. In the case when 4)si(r, a) satisfies the Pauli principle, 
and P is an operator of Permutation df the space coordinates of electrons, then 

s~ s~ 
~ZS,k=ee  Z Vff(~-l)kjZS, j - Z UN(2~)jkZS,j (9) 

j = l  j = l  

3 The most complete treatment of the problem is given in a recent paper of Salmon [15]. 
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where ~e~ is parity of the permutation ~ and g~(~) jk=,~.~g;(~- l )k j .  As the 
Vs N are unitary, 

= ( 1 0 )  

Hence the matrices U~(~) form a dual representation of ~N. It is easy to observe, 
that XS, k(k = 1, 2, . . . , f~)  are mutually orthogonal. Every normalizable function 
of space coordinates of electrons, when transforming according to (9), may be used 
as basis for construction of the wave function (8) which is an eigenfunction of 
6 a: and 5ez operators and satisfies the Pauli principle. 

When some orbitals are doubly occupied in configuration 2, then there 
exists a subgroup -~2 of ~N for which go is invariant. Every permutation .~ ~-~2 
only inverts ordering within doubly occupied pairs. Since ~2 is Abelian and 
.~2= j (~  means the identity operator) all U~(.~) can be as follows: 

U f f ( ~ ) i k  = "~3ik , (i, k = 1, 2 . . . . .  f~) ;  and 
Uff(.~)k k = + 1 when k =< f ,  while 
UNS(~)kk = -- 1 for at least one .~ when k > f.  
It can be shown [6], that 

f=f  
and that the functions 

)(m) = ],/ fsN/(N ! 2(N- p)/2) Z Uff (~)km~ (11o (11) S , k  

form an orthonormal set and fulfill relation (9) for rn <= f ,  while for m > f vanish 
identically. The sum is here extended over all N! elements of ~N. 

From (11) results, that for every configuration 2 there exist f linearly inde- 
pendent functions 

~(S2)M,m(r, a) = 2 ( v - m / 4 / ~ .  ~ E E Uff(~)km OSM,kOr) ~ O ( r )  (12) 
k = l  

m =  1 ,2 , . . . , f ;  N s  ~N, 

which fulfil the following conditions: 

~4)(2) - o  m(2) (13) a ~" S M , m  - -  G g ~  

6e24~ ~2) = h 2 S ( S +  1) ~(2) (14) 
S M , m  S M , m  , 

bo,~(2) - t~ ~/tas(2) (15) 

(4) (u) ( 4)SM,. ~ [ 4)S,M,,. ) = 52.6SS, fMM,6m. . (16) 

The matrix elements of an arbitrary Hermitean and spin-free operator ]t ~ 
between the wave functions (12) can now be expressed as 

./a5(2) (u) .~ ~ g/(2~)  I ~ f  I ~S,M, . ) = (17) t ,  SS,  U M M ,  ~a mn \ ~ S M , m  
where [6] 

n ~ )  = ]~, e2.(~) [Us~(~)]{m 0 <~  To 13r go> (18) 

m = 1 , 2  . . . .  , f ;  n = l ,  2 . . . .  ,g;  

f = f l ;  g = f ~ ;  f > g ;  
p and q are the numbers of singly occupied orbitals in configurations 2 and 
respectively ; [U~(N)] f~ is the rectangular part of U~(N) containing first f 
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rows and g columns; 
~ ( ~ )  = 2 ep +q)/4- N/2 ord {~xu(~)} (19) 

where ord{~,u(~)} is the order of a subset ~ ( ~ )  of ~N defined as follows: 
e ~xu(~) if there exist . ~  e . ~  and "~u ~ "~u, such that ~ = . ~ . ~ ;  Z' means 

that from each set ~3~,(~) only one element should be included. 
In the primitive function (4) there appear N orbitals 9~,, which are numbered 

from 1 to N by the index i. It is convenient to define, in paralell to the operators 
which act on the space coordinates of electrons, also operators ~ acting on the 
indices i numbering the orbitals. The operators ~ and g are connected by a 
simple relation 

= ~ -  ' (20) 
when they act on q~o. For the representation matrices Uff(~) it gives 

Uf(~) = Uf(~) + (21) 

The formula (18) can be written involving ~ operators: 

H~.~ = y/~.(~) [ uf(~)]s < ~ e o  i j r  i ~,o> (22) 

The formulas (18) and (22) are not satisfactory for application to many- 
electron systems, because the sums are extended over almost all N ! permutations 
of ~N. However only a few terms give nonvanishing contributions to the matrix 
elements. The problem to be solved is to choose these nonvanishing terms and to 
determine the coefficients with which they do appear. The corresponding formulas 
were recently derived by Ruedenberg, Salmon and Poshusta [12-14]. An alterna- 
tive, and completely independently obtained, derivation (partly based on previous 
results of the author [5]) is outlined in the following. 

3. Graphical Representation 

In order to simplify the Eq. (22) we have found to be convenient to introduce 
a graphical representation of a pair of configurations. The orbitals appearing in 
the primitive functions corresponding to a pair of configurations are represented 
by asterisks (if singly occupied) and by circles (if doubly occupied). The symbol 
corresponding to 9z, (gu) orbital is labelled with the number 2z(#i). The asterisks 
and circles are distributed in two rows and N columns. The symbols describing the 
configuration # are placed in the first row and in the second o n e -  the configuration 
2. According to (18), always f ~ g (i.e. p = q). The sequence of the symbols in both 
rows is the same as in the c9rresponding orbital products (4). The symbols 
corresponding to identical orbitals are joined by lines. If it is possible to join them 
in a few distinct ways, then the joining lines are drawn as short as possible. Such 
system circles, asterisks and joining lines is called configuration-pair diagram 
and denoted D~u. For example the pair of configurations: 

~o = WI (rl) 93(r2) ~4(r3) ~4(r4) 96(r5) ~6(r6) 
(23) 

~/O = I/)3 (rl) 94 (r2) 96 (r3) 11)8 (r4) 1131 (r5) 91 (r6) 

4 Some useful properties of the double coset ~3;.~,(#) are derived by Junker and Klein [3]. 
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is represented by the diagram: 

1 3 4 4 6 6 

D~ = (24) 
@ 

3 4 6 8 1 l 

In such a way to every rectangular H ~ )  matrix corresponds one Dz, diagram. 
Every Dz, diagram generates a set of N! diagrams ~zu(~) called numbered 

diagrams of a configuration pair. The graphical representation of Nzu(o r is the 
same as that of Dz,, however the symbols representing the orbitals are now ad- 
ditionally provided with their consecutive numbers in the orbital product (4) 
(number i for ~o~, orbital). In Nz,(~) diagram the order of orbitals in the first row 
is the same as in ~z~(J) while in the second one it is changed in respect to ~u(~r 
and is the same as in r  The joining lines are also properly changed. If we 
accept the convention that the operators ~ may properly permute the orbitals 
in the second row of the numbered diagrams and do not affect the first row, then 
all N! diagrams ~ u ( ~ )  can be expressed as 

@z.(~) = ~ z u ( Y )  �9 (25) 

For example, for the diagram (24) 

1 2 3 4 5 6 

~"(g) = ~ 0 0 

1 2 3 4 5 6 

and 

(i~) ~My) = 

1 2 3 4- 5 6 

,o 
4 1 2 3 5 6 

In these diagrams the indices 2i and #i are for simplicity sake omitted. 
In the case when identical orbitals are on the same positions in ~o and ~ o ,  

the corresponding joining lines in the numbered diagram Nzu(g) are "vertical". 
The difference between number of electrons (N) and number of the vertical lines 
is called rank of the numbered diagram. The diagram ~x,(~) in which all the lines 
joining its rows are vertical is called the ordered diagram. Of course, there may 
be a few ordered diagrams for a given configuration-pair diagram. From among 
the permutations which transform Na~,(J) into the ordered diagram we choose 
one and denote it ~o 5. Then, this permutation is kept fixed for a given pair of 
configurations. In our example ~o can be any permutation from the sets ~u((1-3~)) 
or ~xu((T6)(1-33"~)). The rank of an ordered diagram is called rank of the con- 
figuration-pair diagram and equals the number of orbitals by which the two 
involved configurations differ. Where it is essential we write it as a superscript 
in the correspondent symbol: D],. 

s The  pe rm u t a t i on  ~ is identical with the line-up permutation in t roduced  by Ruedenbe rg  [12].  
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The relation (22) states that the configuration-pair diagram Da, is a super- 
position of the numbered diagrams ~;.u(J) 

Dx u = ~ '  ex,(Y) ~su(Y). (261 
y 

The prime in the sum means, that only one element from every set ~ , ( g )  should 
be included. The orthogonality of the orbitals causes, that in the case of n-electron 
operators (we are interested in n = 1 and n = 2) only these diagrams will contribute 
to the sum (26) whose ranks do not exceed n. In our example r = 2. Therefore non- 
zero contributions appear for two-electron operators and come from ordered 
diagrams only: one from the set ~ ( ( 1 ~ ) )  and one from ~.,((4-6)(1~)), say 

1 2 3 d- 5 

5 

1 

5 

1 2 

2 3 

1 2 

4 3 

4 5 ~ 
? 
6 3 

6 
�9 

6 

6 
�9 

+ 

4 

4. C l a s s i f i c a t i o n  o f  C o n f i g u r a t i o n - P a i r  D i a g r a m s  

Every permutation P may be expressed in the form 

g =  P ~ J ~ P  (27) 

where ~s causes a mixing of singly occupied orbitals, j a  - of doubly occupied 
ones, and ~se is a product of transpositions interchanging singly and doubly 
occupied orbitals. Decomposition (27) is always performed in such way, that 
J~a consists of the least possible number of transpositions. 

The decomposition (27) of ~o permutation 

- ~- o ~ o~- o (28)  

can be used as a basis for an useful classification of configuration-pair diagrams. 
Namely, as will be seen, the type of formula for the matrix element (22), (26) is 
determined by this part of ~ x u ( ~ g )  diagram, where non-identical orbitals 
are located on the same positions in the rows. Therefore it is convenient to classify 
the D~ diagrams in such way, that to one class belong these diagrams for which 
~ . u ( ~ o  ~) has the same form. 

All the distinct types of ~ x u ( g ~ o  e) diagrams corresponding to D~u diagrams 
with r < 2 are collected in Table 1. These parts of the diagrams, where identical 
orbitals (when singly occupied) or identical pairs of orbitals (when doubly 
occupied) are located on the same positions in both rows, are there omitted. As 
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Table 1. Types of ~ u ( ~ o ~ o  d) diagrams 

No. ~au(~o~o) Rank of Dx~ ~zu(~o) P - q 

+ + 
1 2 1 0 

+ + 

O - - O  
2 2 1 0 

O - - O  

3 2 2 0 
+ 

4 2 2 0 
- - 0  

5 2 2 0 
1 � 9  

6 2 4 0 

2 ~/2 2 7 
+ 

0 1 � 9  
2 ~/2 2 8 

+ + 

- ~  
2 21/2 2 I0 

1 � 9  

11 2 2 4 

+ 
12 1 1 0 

+ 

1 1/~ 2 14 

15 0 1 0 
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seen, all the D[u diagrams (r < 2) have been distributed into 15 classes. According 
to the rank r, there are 11 classes for r = 2, 3 classes for r = 1 and one class for r = 0. 

Let the number of orbitals being singly occupied in configuration 2(#) and 
doubly occupied in configuration #(2) be denoted by ta(tu) and max(ta, t,) be 
the bigger of these numbers. If p = q then ~ consists of t = max(ta, t,) trans- 
positions. If p 4= q then ( p -  q)/2 singly occupied orbitals of configuration 2 may 
be brought into coincidence with the corresponding doubly occupied orbitals of 
configuration/z by means of ~6 (a pair of doubly occupied orbitals in/~ may always 
be placed in a proper position as the representation matrix corresponding to a 
transposition of two doubly occupied pairs is unit). Hence, if max (tz, t,) > (p - q)/2 
then ~ge consists of 

t = max (t~, t~) - (p - q)/2 (29) 

transpositions, and ~ = d (i.e. t = 0) in the opposite case. 

5. Evaluation of e~.(~0) 

If ~au(g0) is decomposed after (28), then 

$,~u(Jo) = {~uYffgg .~a~}  �9 (30) 

may always be expressed as a product of operators transposing pairs of doubly 
occupied orbitals. Then { ~ z }  = {~z~o a} 6 and 

ord {$~,(~o)} = o r d  { 8 , ~ 8 x }  (31) 

Now, if ~ a = j ,  then o r d { ~ a u ( ~ ) } = o r d { ~ a } = 2 ( N - q ) / 2  (because ~ is a 
subgroup of "~u and .~,.~z = .~). Therefore, according to (19), in this case 

cr  = 2 (p-q)/* . (32) 

I f~8 a consists of one transposition (d's), where ~v~. is a singly occupied orbital and 
~ ,  = ~pz,,, is a doubly occupied one, then 

~xu (go) = 2(P- *)/4 + 1 (33) 

Indeed, if ~z e .~x then either (d's) ~a = ~x(d's) (if.~x does not invert the (d'd') pair) 
or ( d ' s ) ~  = ~(d"s)  (if .~  inverts (d'd")). Hence the set {.~,~a~a} consists of 
permutations ~u(d's) and ~.(d"s). Generally. if ~ a  involves t distinct doubly 
occupied orbitals then 

c~,(~o) = 2(~- q)/4 +~ (34) 

where t is determined by Eq. (29). 

6. Representation Matrices 

The appropriate rectangular parts of UsN(~), necessary to evaluate the H (~u) 
matrix (22) may be relatively easily obtained after the genealogical scheme [6] 
or using the SAAP formalism ['14] (for the most important cases tables of UsN(~) 

6 It means that the sets {,#oCt;.} and { .~go  ~} are identical. However the elements o f ~  in general 
do not commute with ~o- 
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are available [6, 16]). As compromise between a time-consuming construction 
of every actually desired representation matrix and a storage-consuming keeping 
of the all N ! matrices in the machine core, it seems to be reasonable to store only 
the matrices of a few transpositions expressing the others, actually desired matrices, 
as their products. However in such case, to obtain the f x 9 part of Uff(N), full 
representation matrices for the component transpositions are needed, dimension 
(6) of whom violently grow up with the number of electrons. A considerable 
reduction of the necessary dimension is possible, basing on the following properties 
of Us N matrices [-61: 

1. If in the primitive function (4) 2d, = 2d,, and '~r r '~d', ~ r 2~, then 

[U~((d'd") J)]SY" = [Uff(J)]  sf  , (35) 

[U~((d'r) y--)]ss -_ [V~((d"r) y ) ] ss  = _ �89 (36) 

[Uff((d' r) (d"s) j ) ] s s  = �89 [UsN(j)]ss + �89 [U~((rs) 3-)] ss (37) 

where Y is an arbitrary permutation not containing d' nor d". 
2. Let ~p be permutation group of the orbitals singly occupied in configuration 

2. If ~ e ~p then 

[u~(~)]ss = u~(~). (38) 

Hence, only the representation matrices U~, corresponding to permutations 
e ~p, are necessary for evaluating of all the matrix elements. This fact is of 

fundamental importance for application, as in general p < N. 

7. The Matrix Elements 

According to rank r of D~. diagrams, four kinds of formulas are possible. 
a) r > 2  
As the orbitals are orthogonal, all the matrix elements of one- and two- 

electron operators are equal to zero in this case. 
b) r = 2  
In (26) there are at most two non-zero components, namely 

D~u -= c~xu(Yo) ~x,(go) + c~((ik) Yo) ~'~u((ik) Yo) (39) 

where i and k are the numbers of the orbitals of configuration 2 which do not link 
to any orbital of #. Prime in the second term means, that it appears only in the 
case when (ik) ~o r ~u(~o)  �9 As can be easily verified, for all the diagrams with r = 2 

exu((ik) Yo) = ~z,(Yo) . (40) 

Hence the relation (39) may be written as 

n (~") = ~.(Yo) {[u~(Yo)] s~ <Yo ~~ I ~ I  ~~ (41) 
+ [ UsN((ik) Yo)] so <(ik) Yo ~21~1 v~ �9 

Let ~p,j and ~Pu, be the orbitals of configuration /~ located in the diagram 
~ , ( ~ o )  on the positions corresponding to ~x, and ~Pz~ respectively. Then, after 
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Table 2. az. coefficients and Azu matrices 

N o .  N s -  a a ; . g  A 2g 

j l 

+ + 
1 1 UE((ik)) 

+ + 
i k 

j l 

�9 �9 
2 1 0 

0--0 
i k 

j l 

3 - 1  
+ 

i m k - 1  k 

1 + U~((im)) 

j l 

4 - 1  0 
--0 

i k - - 1  k 

j l 

5 - 1  0 
�9 

m i k 

j l 

~ 
6 t 

- - 0  
m n i - - 1  i k - i  k 

U~((mn)) 

j l 

+ I - � 9  + + 
i m k 

]/2 U{((ik)) 

j l 

0 - - 0  
8 l/2 o 

+ + 
i k 

j l 

9 - l / 2  I / i [ 1  + U{((im))] 
�9 

m n i k - 1  k 

j l 

10 - -V2  0 
- - O  

m n i k 

j l 

11 2 2 U{((ik)) 
+ 

m i n k 

a Where essential, the orbitals are provided with their consecutive numbers in the orbital product 
(4) (i for ~ (~p,~) orbital). The indices 2 i a n d / 4  are for simplicity sake omitted. 
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performing in (41) integration over all the variables but j-th and/-th, and making 
use of the orthogonality of orbitals, we get 7 

HCZ"~ = ~x.(go) [{[.~,~'I'~k~,] + K'~k~sl;~3 U~((ik))} UsN(~)] so (42) 

where 
[;~i~ts [ ~k#Z] = ~ W*,(rl) ~L(r2) d2(rl, r2) tpus(r~) ~. ,(r2) dz~2. (43) 

Of course, the contributions from one-electron operators in this case vanish. 
Formula (42) presents the most compact expression for the matrix elements 

in the case of r = 2. However the representation matrices appearing in it are 
formed for the whole operators ~o and (ik)~o, including contributions from 
~o a and from r As was previously explained, it is rather inconvenient in 
applications. Therefore we will perform a further simplification of (42). Making 
use of (28) we get 

UN(~o) = U; (~) d) U; (~) U; (~) . (44) 

From (35) and (37) it directly results that [ U ; ( ~ ) ]  f f  ~- 1 (1 is f x f unit matrix). 
Using formulas (35)-(38) the matrices [Us~(~o)] ~'~ and [U~((ik)~o)] fs can be 
transformed as follows: 

cq.(~o) [U~(~o)] fs = ax. U ~ ( ~ ) ,  (45) 

az.(~o) [UN((ik) ~o)] f f  = A ;.,. U~(C~g) (46) 

where az~ is a number and A z . -  an f  x fmatrix.  The values of a~. and Az~ depend. 
on the specific form of the appropriate configuration-pair diagram. Coefficients 
c(z~(~) have been included into az~ and A ~  in order to simplify the notation. 
The A 4. matrices can be constructed involving only f x fpar ts  of the representation 
matrices corresponding to transpositions of singly occupied orbitals and are 
listed in Table 2. Also the values of az. are there given s. The formula (42) takes 
now the form: 

H (;'") = {aa. [2,,uj [ 2k,U,] + A z~ [;.,.;s I ;.,~3} [ u~-(.#,9] s~ (47) 

As an illustration of the method of treatment let us derive the Axu matrix 
and calculate the value of az. for diagram No. 6. Applying (36), (37) and (38) we get: 

[Uff(~o)] ss = [Uff((i - 1, m) (k - 1, n) ~ ) ] f f  = �88 [Uff(~))]ss = �88 U ~ ( ~ ) ,  

[UZ((ik) &)]ss = [UsN((ik) (i - 1, m)(k - 1, n) & ) ] s s  

= - i ,  ,,) & ) ] s s  + - i ,  n) & ) ] s s  

=�88 [ c { ( (mn)  g )]ss = �88 

Hence a~. = ~ , (~o) /4  = 1, and A ~  = U~((mn)). Numbering of the orbitals after 
Table 2. 

7 Note a difference between this formula and the corresponding one derived by Ruedenberg et al. 
[12-14].  In the Ruedenberg's formula the both terms do appear also when they are identical, while in 
(42) only in the case when they are essentially different. For this reason axu(~)  differs in some cases 
from the Ruedenberg's  (N,~(U) N~(V)) 1/2 coefficient by factor 2. 

8 Let us note that aa~ = e2 ~p-~)/4, where ~ is parity of ~,~d permutation, and Aa~ # 0 only if neither 
~,k = )~i nor/*j = p~. 
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c) r = l .  
Retaining in (26) only nonvanishing terms, 

N 

D~u = ~ ( ~ )  ~zu(~o) + Z '  ~u((mi) ~o) ~ ~u((mi) d~) 
m = l  

(48) 

where ~p~, does not link to any orbital of configuration #. The prime over the sum 
means that from every set ~3zu((mi ) go) only one term is included. 

As seen in Table 1, three distinct types of configuration-pair diagrams are 
possible (No. 12, 13 and 14). The correspondent formulas are as follows: 

J 

 iagaml  :::I i I I I I f  
i 

After simple manipulation we obtain 

exu(~o)= 1; [ U ~ ( ~ ) ] : : =  U{(g~); and ( i fm#i ) ,  

ezu((im) ~ ) =  {;  (if m_< p) 
(if m > p), 

[Uff((im) Yo}] f :  = ~V~((im))_ V{(g~) (ifm < p) 
[ - U~(~) /2  (if m > p). 

Thus, Eq. (48) can be rewritten 

H (~u)= I~1~~ ~ [~.,:,.,l~.,,u~] U{((im)) 
r n = l  
(mr  

(N - p)l 2 ] 

I n = l  

Diagramm 13: 

Analogically, 

~ . ( ~ )  = 2; 

J 

" ' '  ? 
n i - 1  ' 

[UU(jo)] ::  = -- U{(J~)/2 ; 

{~ (if m__< p) 
c~u((im) & )  = (if m > p), 

[ Uff ((im) ~ ) ] f  f =- [ Uff ((im) (i - 1, n) : : ) ] f  f 

= ~[1 + U~((m.))] U~(:6)/2 

tuY(~)/4 

(49) 

. . , #  

and (ifm r i, m e  i - 1) 

(if m < p) 
(if m > p). 
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Thus, in this case 

(men)  
(N-p)~2 

m = l  
(m~(i- p)/2) 

p 

I-2,2,~ 12m/Z~] (1 + U~((mn))) 

J 
�9 

v~(y~). 
(50) 

Diagram14 I I + l I I I 
i n 

In the same way 

H ~x")= <~o 7"~ I .fg I ~~ + ~ [-2i2,, 12,./~j] Uf((im)) 
m = l  

("*i' '~") (51) (N-p)~2 } 
- Y~ ~&;~+2~1~,+~,~;3 W ~ ( g 0 ]  ~ .  

m = 1 

Equations(49)-(51) present the final expressions for the matrix elements 
in the case of r = 1. Contributions from one-electron operators appear there only 
in integrals u 

m = l  

where (m =# i) 

[~Ujl = ~ ~ ( r ~ )  &(~0 ~(~1) dzt. (53) 

Then, the H~ ~u) matrix of one-electron operator (1) in the case of r = 1 can be 
written in a condensed form 

Ha~a,) = e2 (, - q)/4 [hi#j3 [ U~ (y~)]~o (54) 

where e is parity of ~ d  permutation 
d) r = 0 .  
In this case Uff(go) = 1, as 3o is the identity operator. Thus 

D~ = ~zu(o r + ~' c~zu((ij) ) ~.((ij)) (55) 
(i j) 

where the sum is extended over the all distinct ~au((ij)) sets. The explicit ex- 
pression for H ~") is p ~_ 

n(~")=<gJ~176 ~2 ~2 [2i2j12./A(] U~((ij)) 
i = j + l  j = l  

p ( N - p ) / 2  

- Z ~ [2,2p+2j12p+zj2~] (56) 
i = l  j = l  

(N-p)/2 (N-p)/2 - 1 

i = j + t  j = l  

where 
N N N - 1  

i = 1  i = j + l  j = l  
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8. Example of Application 

Let us evaluate the matrix elements of ~Y~ operator (3) for the pair of configu- 
rations (23). In this case 

~ = (23)(12); Yo~=l 
and 

1 2 3 4 5 6 
( I )  (3) (4) (4) (6) (6) 

~.(~o) = 

�9 
(6) (3) (4) (8) (1) ( t )  
3 1 2 4 5 6 

Names of the orbitals (the numbers 2i(&) for ~pai(~pui) orbitals) are given in pa- 
renthesis. As seen, the diagram corresponds to the case No. 9 (Tables 1 and 2). 
Making use of Table 2 and Eq. (47) 

H(~u)= { - [ / 2  [84116] + ~/2 [14186] [1 + Us4((34))]} [Us4((23)(12))] so 

For the singlet configurations 9 (S = 0): 

/= fo4  =2; 9 = f 2 = 1  

[ -1 /2  ~3131~]. U4((34,): [ ~ Oll U4((12)) = I~ _~l ; U 4 ( ( 2 3 ) ) - - ! _ 1 / ~ / 2  , _ 

Thus 

H(ZU) = [1/3/2J [84116] - [14186]. 

For the triplet configurations (S = 1): 

f = f ~ * = 3 ;  g = f 2 = l  

I - 1  0 03] 
U~4((12)) = 0 - 1/3 - 2 V 2  / 

0 -2 /3 1/3) 

[ -1 /2  - ] ~ / 2  i ]  

H(~U) = 03~1184116] + : [14186] 

Thus 

U~((34)) = - 

0 -  

9. Numerical Procedure 

Basing on the above presented method, an ALGOL procedure was written 
and run in a few programmes at GIER computer at the Department of Numerical 

9 The representation matrices U~ and U~ are taken from [16]. 
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Calculations, Warsaw University. The procedure evaluates the matrix elements 
for an arbitrary pair of configurations corresponding to a given spin multiplicity. 
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